Translate

jueves, 13 de agosto de 2015

IMPORTANCIA BIOLÓGICA DE LAS PROTEINAS



Las proteínas son de importancia biológica porque son alimentos de función plástica o estructural, empleados por las células para sintetizar sus propias proteínas, que son utilizadas en los procesos de crecimiento y la construcción de tejidos y órganos. Sólo se consumen para producir energía cuando se han agotado las reservas de glúcidos y de lípidos.



Las proteínas fibrosas son moléculas muy alargadas, cuyas estructuras secundarias constituyen sus motivos estructurales predominantes. Muchas proteínas fibrosas desempeñan un papel estructural, en funciones de conexión, de protección o de soporte.




  • a queratina
Es el principal componente de la epidermis exterior dura y de sus apéndices, como el pelo, cuerno, uñas y plumas. Se clasifican en a queratinas, que se encuentran en mamíferos, y b queratinas, presentes en pájaros y reptiles.





La elastina es una molécula proteica que confiere elasticidad a los tejidos. Las fibras de elastina sujetan a las fibras de colágeno y las mantienen en su lugar y a diferencia del colágeno (que confiere dureza, resistencia o firmeza a los tejidos), la elastina aporta flexibilidad y elasticidad. De hecho, tiene una enorme capacidad para estirarse. Puede llegar a recordar a una cama elástica.



El citocromo c es una proteína pequeña, que funciona como transportador electrónico mitocondrial entre los complejos respiratorios III y IV. Se trata de una proteína monomérica, es decir con un solo polipéptido; unido a esta estructura hay un grupo prostético constituido por un hemo C, es decir, una protoporfirina IX con un ion de hierro coordinado.

El grupo prostético porfirínico está unido a la proteína covalentemente, a través de dos cisteínas. El grupo prostético aparece inmerso en el interior de la estructura, en un entorno hidrofóbico.

La lisozima, también llamada muramidasa, es una enzima de 14,4 kilodalton que daña las células bacterianas catalizando la hidrólisis de las uniones beta 1,4 entre los residuos de ácido N-acetilmurámico y N-acetil-D-glucosamina en un peptidoglicano. La lisozima es abundante en numerosas secreciones como la saliva, las lágrimas y el moco. Está presente también en los gránulos citoplasmáticos de los neutrófilos polimorfonucleares PMN. Una gran cantidad de esta enzima puede hallarse en las claras de huevo.


Ribonucleasa, abreviada comúnmente como RNasa, es una enzima (nucleasa) que cataliza la hidrólisis de ARN en componentes más pequeños. Pueden dividirse en endonucleasas y exonucleasas, y comprenden varias subclases dentro de las clases de enzimas EC 3.1
Las ribonucleasas son extremadamente comunes, lo que resulta en periodos de vida muy cortos para cualquier ARN en un ambiente no protegido. Un mecanismo de protección, para el ADN, es el inhibidor de la ribonucleasa (IR), el cual abarca una fracción relativamente grande de las proteínas celulares(~0.1%) y se une a ciertas ribonucleasas (RNasas) con mayor afinidad que cualquier otra interacción proteína-proteína; la constante de disociación para el complejo IR-RNasa A es -20 fM bajo condiciones fisiológicas. El IR es usado en la mayoría de los laboratorios que estudian el ARN para proteger sus muestras de la degradación por parte de las RNasas ambientales.


La mioglobina es una hemoproteína muscular, estructuralmente y funcionalmente muy parecida a la hemoglobina. Es una proteína relativamente pequeña constituida por una cadena polipeptídica de 153 residuos aminoácidos y por un grupo hemo que contiene un átomo de hierro. La función de la mioglobina es almacenar oxígeno. Menos comúnmente se la ha denominado también miohemoglobina o hemoglobina muscular.

La hemoglobina es una heteroproteína de la sangre, de masa molecular de 64.000 g/mol (64 kDa), de color rojo característico, que transporta el oxígeno desde los órganos respiratorios hasta los tejidos, el dióxido de carbono desde los tejidos hasta los pulmones que lo eliminan y también participa en la regulación de pH de la sangre, en vertebrados y algunos invertebrados. La hemoglobina es una proteína de estructura cuaternaria, que consta de cuatro subunidades. Esta proteína hace parte de la familia de las hemoproteínas, ya que posee un grupo hemo.


Las proteínas plasmáticas desempeñan las siguientes funciones:
1. Fibrinógeno: se forma en el hígado y juega . un papel importante en la coagulación de la sangre. Debido a su peso molecular elevado, es uno de los factores que condiciona la viscosidad sanguínea.
2.            Albúmina: de peso molecular bajo, se forma predominantemente en el hígado, pero también, si bien en menor cantidad, en otros tejidos. Es responsable principalmente por la presión coloido-osmótica del plasma. Otra de sus funciones consiste en el transporte de sustancias. Al unirse con las hormonas, vitaminas, bilirrubina, medicamentos, etc., las lleva por la circulación a sus           órganos efectores.
3. Globulinas: son producidas principalmente en el hígado (80%) y en los linfocitos (20%). Se conocen tres tipos de globulina: alfa, beta y gamma. Las primeras (gluco y lipoproteínas) son las transportadoras del angiotensinógeno, de las vitaminas liposolubles y del cobre (ceruloplasmina). Las betaglobulinas (lipoproteínas), incluyen, entre otras, la transferrina y las transportadoras de vitaminas y hormonas. Las gammaglobulinas (producidas por las plasmazellen, plasmocitos y linfocitos) son, en su mayor parte, anticuerpos. Son llamadas también euglobulinas.
La cantidad total de las proteínas plasmáticas es de aproximadamente roo gramos. No sólo. se encuentran en el plasma, sino que pasan a través de la pared capilar al líquido intersticial, siendo su cantidad en este líquido aproximadamente igual que en el plasma, pero su concentración, debido al mayor volumen del compartimiento intersticial, es menor. Las proteínas en el líquido intersticial representan, hasta cierto punto, un reservorio que, en caso de disminución de las proteínas plasmáticas, pasan a la sangre.

BREVE RESUMEN PROTEINAS






Vamos a introducirnos en el mundo de las proteínas, conocer como están formadas, que son los aminoácidos, que funciones tienen las proteínas y terminaremos hablando del código de codones: el código de nucleótidos del ARN mensajero que dará lugar a la síntesis de proteínas.















Se describe la estructura y la organización de las proteínas en 4 niveles: estructura primaria, estructura secundaria, estructura terciaria y estructura cuaternaria.



















Se describen las características y ejemplos de las holoproteínas o proteínas simples

















Revisaremos el proceso de síntesis de las proteínas en la célula. Veremos que este proceso biológico de biosíntesis se lleva a cabo en el citoplasma o citosol celular y que involucra diversos componentes como los ribosomas, el retículo endoplásmico rugoso, el ARNm y el ARNt sí como las enzimas necesarias para generar la cadena de aminoácidos.

PROTEÍNAS CONJUGADAS

Las proteínas conjugadas consisten en proteínas simples combinadas con algún componente no proteico. Los grupos no proteicos se llaman grupos prostéticos. Las proteínas conjugadas se incluyen el siguiente grupo.






Nucleoproteínas: (Proteína + ácido nucleico). Las nucleoproteínas son proteínas combinadas con ácidos nucleicos. En las truchas, las nucleoproteínas de los espermatozoides constituyen el 90% del material sólido y en los núcleos de eritrocitos, casi el 100% de las nucleoproteínas son combinaciones de ácidos nucleicos con protaminas de proteína básica simple. Las nuclehistonas son combinaciones de ácidos nucleicos con la proteína básica de la histona simple. Además, existen varias proteínas ácidas, las proteínas no histonas.









Glicoproteínas (Proteínas + carbohidratos): Las glicoproteínas son proteínas combinadas con carbohidratos. En la mayoría de las glicoproteínas, la unión se hace entre las asparaginas (ANS) y N-acetil-D-glucosamina (GIcNAc). Las glándulas salivales y las glándulas mucosas del tracto digestivo segregan mucoproteínas en las que se combinan N- acetilglicosamina y serinel treonina de la proteína. Las glicoproteínas se dividen en dos categorías principales, las intracelulares y las secretoras. Las glicoproteínas intracelulares están presentes en las membranas celulares y tienen un papel importante en la interacción y el reconocimiento de la membrana. Algunos ejemplos de glicoproteínas secretoras son: glicoproteínas plasmáticas, segregaciones del hígado, tiroglobulina, segregaciones de las glándulas tiroideas, inmunoglobulinas, segregaciones de las células plasmáticas, ovoalbúmina, segregaciones por el oviducto de la gallina, ribonucleasa, la enzima que descompone el ARN y la desoxirribonucleasa, la enzima que descompone el ADN.





Fosfoproteínas (proteína + fosfato): Las fosfoproteínas son proteínas combinadas con un radical que contiene fosfato, distinto de un ácido nucleico o de un ácido fosfolípido. Unos ejemplos de fosfoproteínas son la caseína de la leche y el ovovitellin de los huevos.
Cromoproteínas: Éstas son las proteínas, combinadas con un grupo prostético, es decir, un pigmento. Algunos ejemplos de cromoproteínas son los pigmentos respiratorios de hemoglobina y de hemocianina, púrpura visual o la rodopsina que se encuentra en los bastones de los ojos, los flavoproteínas y los citocromos.













Lipoproteínas: Estas son unas proteínas conjugadas con lípidos. Hay cuatro tipos de lipoproteínas, las lipoproteínas de alta densidad (HDL) o las a-lipoproteínas, las lipoproteínas de baja densidad (VLDL) o las lipoproteínas pre-β y los quilomicrones.








Metaloproteínas: Estas son proteínas conjugadas con iones metálicos que no forman parte del grupo prostético. Entre éstas se incluyen la ceruloplasmina, una enzima con actividad oxidasa que puede transportar cobre en el plasma y ​​el siderofilin que se encuentra en el hierro.

PROTEÍNAS SIMPLES

Las proteínas simples constan sólo de aminoácidos o de sus derivados. Cuando se hidrolizan por ácidos, álcalis o enzimas, las proteínas simples producen aminoácidos únicos o sus derivados. Podemos nombrar los siguientes grupos.





Albúminas: Estas proteínas son solubles en agua, se encuentran en todas las células del cuerpo y también en el torrente sanguíneo. Algunos ejemplos de albúminas son las lacto albúminas que se encuentran en la leche y las seroalbúminas que se encuentran en la sangre.









Globulinas: Estas proteínas son insolubles en agua pero son solubles en soluciones salinas diluidas con fuertes ácidos y sus bases. Los ejemplos de globulinas son la lactoglobulina de la leche y la ovoglobulina.














Glutelinas: Estas proteínas son solubles en ácidos diluidos y en álcalis. La proteína de glutelina de trigo es un buen ejemplo de glutelinas. Éstas, sólo se producen en el material vegetal.















Prolaminas: Estas proteínas son solubles en un 70 u 80% de alcohol. Entre ellas podemos destacar el fliadin de trigo y la zeína del maíz. Se encuentran únicamente en los materiales vegetales.







Albumunoides: Los albuminoides o las selenoproteinas son insolubles en todos los disolventes neutros, en los álcalis diluidos y en los ácidos. Se encuentran en los tejidos conectivos, en el cabello y en las uñas. Algunos ejemplos son la queratina, que se encuentra en las capas queratinizadas de la piel y en la corteza o córtex del cabello y de las uñas y el colágeno que se encuentra en las fibras blancas del tejido areolar.






Histonas: Éstas son proteínas solubles en agua en la que los ácidos básicos aminados son predominantes. Son ricos en arginina o en lisina. Las eucariotas del ADN de los cromosomas se asocian con las histonas en la formación de las nucleoproteínas.








Protaminas: Estas proteínas son solubles en agua y en polipéptidos básicos de bajo peso molecular (aproximadamente de unos 4.000 daltons). Son muy ricos en aminoácidos argininos. La cadena polipeptídica consiste en 28 residuos de aminoácidos, entre los que se incluyen 19 argininas y 8 o 9 aminoácidos no básicos. Las protaminas se encuentran unidas al ADN de los espermatozoides de algunos peces. Algunos ejemplos de protaminas son la salmina (del salmón) y la esturina (de los esturiones).

SÍNTESIS DE PROTEÍNAS

Los pasos de inicio de la síntesis proteica son los siguientes:

Un ribosoma se disocia en sus subunidades 40S y 60S.

Se forma un complejo ternario llamado complejo de preiniciación. Este complejo iniciador consistente en el GTP, el FEI-2 y la subunidad 40S.

El ARNm se une al complejo de preiniciación.

La subunidad 60S se asocia con el complejo de preiniciación para formar el complejo de iniciación 80S.

Proceso inicial de la síntesis proteica

Los factores de iniciación de la síntesis de proteínas, FEI-1 y FEI-3 se unen a la subunidad 40S del ribosoma evitando la asociación a la subunidad 60S. La prevención de la reasociación de la subunidad permite formar el complejo de preiniciación.

El primer paso en la formación del complejo de preiniciación es la unión de GTP al FEI-2 para formar un complejo binario. El eIF-2 está compuesto por tres subunidades, α, β y γ. El complejo binario se une al iniciador activado ARNt, ARNtmet formando un complejo ternario que luego se une a la subunidad 40S para formar el complejo de preiniciación 43S. El complejo de preiniciación se estabiliza por la asociación previamente formada de FEI-3 y FEI-1 con la subunidad 40S.
La estructura de ARNm de eucariotas está unido por EIFS específicos antes de su asociación con el complejo de preiniciación. Esta unión se lleva a cabo por el factor de iniciación-FEI-4F. Este factor es en realidad un complejo de 3 proteínas; la proteína eIF-4E, proteína A y proteína G. La proteína FEI-4E es una proteína que se une a la estructura. Al unirse, la proteína FEI-4A hidroliza la ATP y exhibe actividad RNA helicasa. La reversión de la estructura secundaria del ARNm es necesarioa para permitir el acceso de las subunidades del ribosoma. La proteína FEI-4G ayuda a la unión del ARNm al complejo 43S de preiniciación.

Una vez que el ARNm está bien alineado en el complejo de preiniciación y el iniciador se reunió con el ARNtmet se une al codón AUG iniciador (un proceso facilitado por eIF-1) de la subunidad 60S asociada con el complejo. La asociación de la subunidad 60S requiere la actividad de eIF-5 que se ha unido a la primera complejo de preiniciación. La energía necesaria para estimular la formación del complejo de iniciación 80S proviene de la hidrólisis del GTP unido al FEI-2. La forma envolvente del PIB del eIF-2 se une al FEI-2B, que estimula el intercambio de GTP para el PIB en el FEI-2. Cuando se intercambia eIF GTP-2B se disocia del FEI-2. Esto se denomina ciclo FEI-2. Este ciclo es absolutamente necesario para que se produzca la iniciación de traslación de eucariotas. La reacción de intercambio GTP puede verse afectada por la fosforilación de la subunidad α de FEI-2.

En esta etapa el iniciador ARNtmet se une al ARNm a por un sitio del ribosoma llamado sitio-P (Sitio péptido). El otro sitio a través del cual se une el ribosoma para recibir el ARNt se llama sitio-A (Sitio aminoácidos).

Siguiente fase de la síntesis de proteínas: fase de elongación de la síntesis de proteínas.

Última fase de la síntesis de proteínas: fase de terminación de la síntesis de proteínas.

CLASIFICACIÓN DE LAS PROTEINAS

Las proteínas pueden clasificarse en tres grupos, en función de su forma y su solubilidad.

Proteínas fibrosas: las proteínas fibrosas tienen una estructura alargada, formada por largos filamentos de proteínas, de forma cilíndrica. No son solubles en agua. Un ejemplo de proteína fibrosa es el colágeno.

Proteínas globulares: estas proteínas tienen una naturaleza más o menos esférica. Debido a su distribución de aminoácidos (hidrófobo en su interior e hidrófilo en su exterior) que son muy solubles en las soluciones acuosas. La mioglobina es un claro ejemplo de las proteínas globulares.

Proteínas de membrana: son proteínas que se encuentran en asociación con las membranas lipídicas. Esas proteínas de membrana que están embebidas en la bicapa lipídica, poseen grandes aminoácidos hidrófobos que interactúan con el entorno no polar de la bicapa interior. Las proteínas de membrana no son solubles en soluciones acuosas. Un ejemplo de proteína de membrana es la rodopsina. Debes tener en cuenta que la rodopsina es una proteína integral de membrana y se encuentra incrustada en la bicapa. La membrana lipídica no se muestra en la estructura presentada.

Clasificación de las proteínas globulares según su estructura secundaria


Las proteínas también se clasifican según el tipo de estructura secundaria que tengan.

Hélice alfa: esta estructura se desarrolla en forma de espiral sobre sí misma debido a los giros producidos alrededor del carbono beta de cada aminoácido. La mioglobina es un claro ejemplo de proteína de hélice alfa.

Hoja plegada beta: cuando la cadena principal se estira al máximo, se adopta una configuración conocida como cadena beta. La tenascina es un ejemplo de las proteínas hoja plegada beta.

Alfa/beta: Las proteínas que contienen una estructura secundaria que alterna la hélice alfa y la hoja plegada beta. Un ejemplo de proteína alfa/beta es la triosa fosfato isomerasa. Esta estructura es conocida como un barril TIM. La helicoidal alterna y los segmentos de hoja plegada beta forman una estructura de barril cerrado.


Alfa + Beta: En estas proteínas, la hélice alfa y la hoja plegada beta se producen en regiones independientes de la molécula. La ribonucleasa A es un ejemplo de proteína alfa + beta.

PROTEÍNAS


 Las proteínas son uno de los principales componentes de todas nuestras células. Los aminoácidos son los bloques de construcción de las proteínas. Los aminoácidos se agrupan de acuerdo con su comportamiento químico.



Las proteínas se sintetizan mediante la unión entre sí de las cadenas lineales de aminoácidos. Los diferentes aminoácidos imparten diferentes comportamientos químicos a la estructura de las proteínas. Algunos de los 20 aminoácidos comunes, pueden ser sintetizados por las células. Otros, es decir, los aminoácidos esenciales, deben formar parte de nuestra dieta.